| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Grade 7/8 Math Circles
March 6/7/8/9, 2023
Recursion and Stack ADTs - Problem Set

Exercise Solutions

Exercise 1
Write a recursive function called fibonacci that takes a number n and gives the n'® term of
the Fibonacci sequence. Keep in mind that the first two digits of the sequences are 1 and 1. If

you need a reminder of how the Fibonacci sequence works, refer back to Example A.

Note: n'™ means counting an arbitrary number, like 15¢,274, 3rd 4th nth.

Solution
Since the first two digits of the sequence are 1 and 1, we actually have two base cases. If n=1,
then we return 1, and if n=2, then we also return 1. So this means our function would look

something like this.

1 n) { 1 (n) {

2 if(n=1) { 2 if(n=1 or n=2) {
3 return 1 3 return 1

4 } else if(n=2) { 4 } else {

) return 1) recursive case
6 } else { 6 }

7 recursive case 7}

8 } 8

9 % 9

Note that these two ways of writing the function are the same, since in both base cases the
return value is 1. The second way is a little more efficient to write since it uses less code. This

would not work if the return values were different for the base cases.

Next, we look at our recursive case. Since our n** Fibonacci number is calculated by adding

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

the previous two Fibonacci numbers, we can deduce that our recursive case must be return

fibonacci (num-1) + fibonacci (num-2). So we get the following function

1 fibonacci(n) {

2 if (n=1 or n=2) {

3 return 1

4 } else {

) return fibonacci(n-1) + fibonacci(n-2)
6 }

7}

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Exercise 2
Given the following pictures of the stack, fill out the table based on what would happen if you

called the stack function from what the picture is showing.

function call return value modifications

stack.top ()

stack.is_empty ()

stack.is_full ()

stack.push (item)

k.
empty stack stack.pop ()
function call return value modifications
stack.top ()
Hello world! stack. isiempty ()
Crade 8
—— stack.is_full ()
Math is fun stack.push (item)
One

stack.pop ()

non-empty stack

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Solution

function call return value modifications

stack.top () none none

stack.is_empty () true none

stack.is_full () false none
stack.push (item) none puts item at the
top of the stack

stack.pop () none none

empty stack

function call return value modifications

stack.top () "Hello none

World!™"
stack.is_empty () false none
Hello world!
stack.is_full () ? none
Crade 8 . .
stack.push (item) none puts item at the
Crade top of the stack
Math is fun " "
stack.pop () Hello removes "Hello
One World!™" World!" from the
non-empty stack top of the stack
Note that:
e top (), is_empty, and is_full will never modify your stack.

e push (item) will always work.

e pop () can only return something if there is something on the stack.

stack.push (stack.pop ())).

An item that is popped can be directly used to push onto a stack (ie.

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Exercise 3
Suppose you had the same burger as in Example E, but instead of popping an ingredient onto
the plate, you popped the ingredient to another stack. In this setup, other than your burger

stack, you have stackl and stack2. Use stack functions (operations) to fix your burger.

Lettuce

Tomato

Patty

Bun

Pickle

Bun

burger stackl stack2

Solution

Similar to Example E, we need to pop every ingredient on top of the bottom bun. But what
is different is that since we are popping ingredients onto stacks, when we rebuild our burger,
we can only use the ingredient on top. This means that if we pop all our ingredients onto one
stack, it will be less efficient when we need the ingredient that is at the bottom of the stack.

Note that there are many ways to solve this problem, some being more efficient than others.

Let’s start by popping off the ingredients from burger and pushing what we can onto
stackl.

1 stackl.push(burger.pop())

This pops “Lettuce” off of burger and pushes it onto stackl. Since we want “Lettuce”
to be on top of the last “Bun”, we can reason that we should not push anything else onto

stackl so that we can easily access “Lettuce” after we’ve popped everything we need to off

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

of burger. So we push everything else onto stack2 instead.

stack2.push(burger.pop())
stack2.push(burger.pop())
stack2.push(burger.pop())

Ot s W N

stack2.push(burger.pop())

Now we get the following picture:

Pickle
Bun
Patty
Bun Lettuce Tomato
burger stackl stack2

Now we start stacking the burger again. Since “Lettuce” is easily accessible, all we have to do

is pop it off of stackl and push it onto burger.

6 burger.push(stackl.pop()) * Put the lettuce onto burger *

Since we need “Tomato” to be pushed onto burger, we need to get to the bottom of
stack2. But we also don’t want to push these other ingredients onto burger either, so we

push it onto stackl since it is currently empty. So we have the following code.

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

stackl.push(stack2.pop())
stackl.push(stack2.pop())
stackl.push(stack2.pop())
10 burger.push(stack2.pop()) * Put the tomato onto burger *

Now we have the following picture:

Tomato Patty

Lettuce Bun

Bun Pickle
burger stackl stack?2

Now we finish off our burger with the following stack operations.

11 stack2.push(stackl.pop())

12 stack2.push(stackl.pop())

13 burger.push(stackl.pop()) * Put the pickle onto burger *

14 stackl.push(stack2.pop())

15 burger.push(stack2.pop()) * Put the patty onto the burger *
16 burger.push(stackl.pop()) * Put the bun onto the burger *

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Exercise 4
Write a function called search that takes stack and item as arguments and searches for
item within stack. If the item is found, then return true. If it cannot be found, then re-

turn “Not found”.

Solution
First, we want to look at the structure of our function. Our function is called search and

have our two arguments, stack and item.

1 (stack, item) {

2 if (base case condition) {
3 base case

4 } else {

) recursive case

6 }

7}

Base case: Then we look at our base case, or in other words, when is it “obvious” that we
have our answer? It’s “obvious” when we either have item at the top of the stack or if the

stack is empty. So we have our following code.

s A

(stack, item) {
if (stack.is_empty()) {
return "Not found"
} else if(stack.top()=item) {
return true
} else {

recurstve case

© 00 N O Ot s W N

J

Recursive case: Lastly, we look at our recursive case, or in other words, how can we make our

problem smaller.

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

1 search(stack, item) {

if (stack.is_empty()) {
return "Not found"

} else if(stack.top()=item) {
return true

} else {
stack.pop()

return search(stack, item)

© 00 N O Ut = W N

—
)
(-]

Note that since stack.pop () modifies the stack, our problem gets smaller every function

call.

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Problem Set Solutions

1. What are the two cases you need to consider when thinking about recursion? Briefly describe

each case.

Solution:
The two cases to consider are the base case and the recursive case. The base case is the
smallest, most “obvious” case in the problem, and the recursive case is the when the

problem is not at the base case but gets closer and closer each iteration.

2. Given the following code, identify any functions, arguments, and variables. What is the final

outcome of the function call check (main (1, 2)) on line 147

1 (argl, arg2) {

2 return "Hello World."

3}

4

5 (phrase) {

6 if (phrase="Hello World!") {

7 return 1

8 } else if(phrase="Hello World.") {
9 return 2

10 } else {

11 return 3

12 }

13 X

14

15 ((1, 2))

Solution

Functions: main, check

Arguments: argl, arg2, phrase

Variables: Same as arguments, since arguments are all variables.

10

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

We can trace the function call check (main (1, 2)) as follows:

check (main(l, 2)) => check("Hello World.")

=>2

So the final outcome of the function call is 2.

3. Suppose you are given a numerical grade called grade. A student has an A if their numeri-
cal grade is between 90-100, a B if their numerical grade is between 80-89, a C if their numer-
ical grade is between 70-79, a D if their numerical grade is between 60-69, an E if their nu-
merical grade is between 50-59, and F if their numerical grade is under 50. Numerical grades

are only integers. Write an if statement that returns the letter grade.

Hint: You can say —1<=x<=1 to say that x is between -1 and 1 (inclusive).

s B

Solution:

if (90<=grade<=100) {

return "A"

} else if(80<=grade<=89) {
return "B"

else if(70<=grade<=79) {
return "C"

} else if(60<=grade<=69) {

return "D"

} else if(50<=grade<=59) {

© 0 N S Ot W N
[

10 return "E"
11 } else {

12 return "F"
13 }

4. Suppose we started with an empty stack named stack that can hold a maximum of 6 items.
Given the following code, draw a picture of the stack at the points (A), (B), and (C). When-
ever top (), is_empty (), or is_full () is called, write the return value with its line num-

ber (ex: Write ‘Line 5: “Circles”” if stack.top () returns “Circles”).

11

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Note that the not in line 18 turns true into false and false into true. In other words,

it negates the value of stack.is_full ().

1 stack.is_empty()

2 stack.pop()

3 stack.push("Math")

4 stack.push("Circles")

5 stack.top()

6 * (A) =

7 stack.push("Grade 7 and 8")

8 stack.push("Recursion")

9 stack.push("and")

10 stack.push("Stack")

11 stack.push("ADTs")

12 stack.top()

13 = (B) *

14 if(stack.is_full()) {

15 stack.pop(

16 stack.pop()

17 stack.push("I love Stacks!")
18 7} else if(not stack.is_full()) {
19 stack.push("I hate Stacks!")
20 ¥ else {

21 stack.pop()

22 }

23 * (C) =

Solution

Line 1: true
Line 5: “Circles”
Line 12: “Stack”

Line 14: true

First, we write down all the return values of top (), is_empty (), and is_full ().

12

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Line 18: true (Note: the not turns the condition to false)

Then we have the following stack drawings at points (A), (B), and (C).

Stack
and | love Stacks!
Recursion Recursion
Grade 7 and 8 Grade7 and 8
Circles Circles Circles
Math Math Math
(A) (B) (C)

Note that “ADTs” does not end up on the stack in picture (B) because after we push
“Stack” onto the stack, it has 6 items and is full! So attempting to push “ADTs” onto
the stack will not do anything.

. J

5. The Tower of Hanoi is a classical problem where a stack of disks is stacked biggest at the
bottom to smallest at the top. There are various versions of the problem with differing amounts
of disks. The goal of the problem is to move all the disks from the left stack to the right
stack with the same order of disks in the end. However, one restriction is that you cannot
place larger disks on top of smaller disks. Otherwise, your tower would fall! Use stack opera-

tions to solve this problem.
We will call our stacks left, middle, and right respectively.

If you would like to visualize it, you can do so here. Make sure you change the number of
disks to 4. You can also try the problem with more disks if you would like. If you want to

learn more about the Tower of Hanoi, you can do so here.

13

https://www.mathsisfun.com/games/towerofhanoi.html
https://en.wikipedia.org/wiki/Tower_of_Hanoi

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

left middle right

Solution
Since we are just moving pieces, we will only be using push (item) and pop () opera-

tions. The solution is as follows.

middle.push(left.pop())

right.push(left.pop())

right.push(middle.pop())

middle.push(left.pop())

left.push(right.pop())

middle.push(right.pop())

middle.push(left.pop()) * Tower of 3 disks on middle stack *
right.push(left.pop())

© 0 N O Ot s W N

right.push(middle.pop())
left.push(middle.pop())
left.push(right.pop())

— = =
N = O

right.push(middle.pop())
middle.push(left.pop())
right.push(left.pop())

—_ = =
Tt =W

right.push(middle.pop()) * Tower of 4 disks on the right stack *

6. Suppose you are given a stack that you don’t know the size of. Write a function called

size that takes a stack and a variable count as arguments and returns the size of the

14

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

stack. Note that count will always start at 0, so we will always initially call the function
like this: size (stack, 0).

Solution
This is actually the same problem as the line analogy used in the introduction of the

lesson!

Base case: The easiest case is to count the size of an empty stack. If the stack is
empty, then we return the count. You might think that we need to return 0, but that
would actually mean that we return 0 no matter the size of our initial stack. Just be-
cause our stack is empty in our base case doesn’t mean that the initial stack was actu-
ally empty, because our recursive case always makes our problem smaller and smaller

until we hit the base case.

Recursive case: We want to think about getting closer to our base case, which is when a
stack is empty. How do we do that? The only way to make our stack more empty is to
pop items off, so we call stack.pop () to do this. But we have to remember to count
the item that we just popped off, so we also increase our count by one before recur-

sively calling size again.

So this gives us the following code.

(stack, count) {

if (stack.is_empty()){
return count

} else {
stack.pop()

(stack, count+1)

0 N O Ot s W NN

15

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Challenge Problem
8. Suppose you are given a stack and want to find an item and put it at the top of the stack.
Suppose in addition that you are given a function called push_to_stack as defined below
that takes two stacks, stack and temp, and pushes all the items on temp to stack. Write
a function called put_at_top that takes two stacks, stack and temp, and a variable item
and places item at the top of the stack without changing the order of the other items in
the stack. If the item is not in the stack, then return “Error”. temp is an empty stack, and

stack is the stack that may or may not hold item.

1 (stack, temp) {

2 if (temp.is_empty()) {

3 return * Return nothing to stop recursion *
4 } else {

5 stack.push(temp.pop())

6 (stack, temp)

7 }

8

Solution

Base case: There are two base cases. Either the item is found at the top of stack and
we need to put it at the top of the stack or item is not in the function at all. The sec-
ond base case happens when stack is empty. This is like our search function that we

looked at in Exercise 4.

If we have the first base case, then the item would be at the top of the stack. So we
need to pop this item off and then use push_to_stack to put the items that we took
off stack and put on temp back onto the stack. Then we need to add item back to
the stack by calling stack.push (item).

Recursive case: To get closer to our base case, we need to pop items off of our stack.
But since we want to keep our items in order, we need to keep our items in temp while

we look for item.

So we have the following function.

16

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

1 put_at_top(stack, temp, item) {

2 if (stack.is_empty()) {

3 push_to_stack(stack, temp)

4 return "Error"

) } else if(stack.top()=item) {

6 stack.pop()

7 push_to_stack(stack, temp)

8 stack.push(item)

9 return * Return nothing to stop recursion *
10 } else {

11 temp.push(stack.pop())

12 put_at_top(stack, temp, item)
13 }

14}

17

